Анализ текущей ситуации в энергетике Российской Федерации Наука в атомной сфере

Атомная промышленность и наука в атомной сфере

Изоляцию жидких РАО от биосферных процессов в глубинных пластах-коллекторах следует рассматривать как инновационную природоохранную технологию. Выбор места строительства новых АЭС в оптимальных для этой технологии геологических условиях повысит экологическую безопасность и позволит значительно снизить экономические затраты на всех этапах "жизни" АЭС.

Проблемы энергетики

Энергетика - это та отрасль производства, которая развивается невиданно быстрыми темпами. Если численность населения в условиях современного демографического взрыва удваивается за 40-50 лет, то в производстве и потреблении энергии это происходит через каждые 12-15 лет. При таком соотношении темпов роста населения и энергетики, энерговооруженность лавинообразно увеличивается не только в суммарном выражении, но и в расчете на душу населения. Нет основания ожидать, что темпы производства и потребления энергии в ближайшей перспективе существенно изменятся (некоторое замедление их в промышленно развитых странах компенсируется ростом энерговооруженности стран третьего мира), поэтому важно получить ответы на следующие вопросы:

. какое влияние на биосферу и отдельные ее элементы оказывают основные виды современной (тепловой, водной, атомной) энергетики и как будет изменяться соотношение этих видов в энергетическом балансе в ближайшей и отдаленной перспективе;

. можно ли уменьшить отрицательное воздействие на среду современных (традиционных) методов получения и использования энергии;

. каковы возможности производства энергии за счет альтернативных (нетрадиционных) ресурсов, таких как энергия солнца, ветра, термальных вод и других источников, которые относятся к неисчерпаемым и экологически чистым.

В настоящее время энергетические потребности обеспечиваются в основном за счет трех видов энергоресурсов: органического топлива, воды и атомного ядра. Энергия воды и атомная энергия используются человеком после превращения ее в электрическую энергию. В то же время значительное количество энергии, заключенной в органическом топливе, используется в виде тепловой и только часть ее превращается в электрическую. Однако и в том и в другом случае высвобождение энергии из органического топлива связано с его сжиганием, следовательно, и с поступлением продуктов горения в окружающую среду.

Экологические проблемы тепловой энергетики

За счет сжигания топлива (включая уголь, дрова и другие биоресурсы) в настоящее время производится около 90% энергии. Сжигание топлива - не только основной источник энергии, но и важнейший поставщик в среду загрязняющих веществ. Тепловые электростанции в наибольшей степени «ответственны» за усиливающийся парниковый эффект и выпадение кислотных осадков. Они, вместе с транспортом, поставляют в атмосферу основную долю техногенного углерода (в основном в виде СО2), около 50% двуокиси серы, 35% - окислов азота и около 35% пыли. Имеются данные, что тепловые электростанции в 2-4 раза сильнее загрязняют среду радиоактивными веществами, чем АЭС такой же мощности. В выбросах ТЭС содержится значительное количество металлов и их соединений. При пересчете на смертельные дозы в годовых выбросах ТЭС мощностью 1 млн. кВт содержится алюминия и его соединений свыше 100 млн. доз, железа-400 млн. доз, магния -1,5 млн. доз. Летальный эффект этих загрязнителей не проявляется только потому, что они попадают в организмы в незначительных количествах. Это не исключает их отрицательного влияния через воду, почвы и другие звенья экосистем. Можно считать, что тепловая энергетика оказывает отрицательное влияние практически на все элементы среды, а также на человека, другие организмы и их сообщества. Вместе с тем влияние энергетики на среду и ее обитателей в большей мере зависит от вида используемых энергоносителей топлива. Наиболее чистым топливом является природный газ, далее следует нефть (мазут), каменные угли, бурые угли, сланцы, торф. Хотя в настоящее время значительная доля электроэнергии производится за счет относительно чистых видов топлива (газ, нефть), однако закономерной является тенденция уменьшения их доли. По имеющимся прогнозам, эти энергоносители потеряют свое ведущее значение уже в первой четверти XXI столетия. Не исключена вероятность существенного увеличения в мировом энергобалансе использования угля. По имеющимся расчетам, запасы углей таковы, что они могут обеспечивать мировые потребности в энергии в течение 200-300 лет. Возможная добыча углей, с учетом разведанных и прогнозных запасов, оценивается более чем в 7 триллионов тони. Поэтому закономерно ожидать увеличения доли углей или продуктов их переработки (например, газа) в получении энергии, а, следовательно, и в загрязнении среды. Угли содержат от 0,2 до десятков процентов серы в основном в виде пирита, сульфата, закисного железа и гипса. Имеющиеся способы улавливания серы при сжигании топлива далеко не всегда используются из-за сложности и дороговизны. Поэтому значительное количество ее поступает и, по-видимому, будет поступать в ближайшей перспективе в окружающую среду. Серьезные экологические проблемы связаны с твердыми отходами ТЭС - золой и шлаками. Хотя зола в основной массе улавливается различными фильтрами, все же в атмосферу в виде выбросов ТЭС ежегодно поступает около 250 млн. тонн мелкодисперсных аэрозолей. Последние способны заметно изменить баланс солнечной радиации у земной поверхности. Они же являются ядрами конденсации для паров воды и формирования осадков; попадая в органы дыхания человека и других организмов, вызывают различные респираторные заболевания. Выбросы ТЭС являются существенным источником такого сильного канцерогенного вещества, как бензопирен. С его действием связано увеличение онкологических заболеваний. В выбросах угольных ТЭС содержатся также окислы кремния и алюминия. Эти абразивные материалы способны разрушать легочную ткань и вызывать такое заболевание, как силикоз. Серьезную проблему вблизи ТЭС представляет складирование золы и ишаков. Для этого требуются значительные территории, которые долгое время не используются, а также являются очагами накопления тяжелых металлов и повышенной радиоактивности.

 ТЭС - существенный источник подогретых вод, которые используются как охлаждающий агент. Эти воды нередко попадают в реки и другие водоемы, обусловливая их тепловое загрязнение и сопутствующие ему цепные природные реакции (размножение водорослей, потерю кислорода, гибель гидробионтов, превращение типично водных экосистем в болотные и т. п.)

Наиболее полно условия надежного пуска блока удовлетворяются при режиме скользящего изменения параметров свежего и промежуточного пара. Для обеспечения температурной и гидравлической устойчивости потоков в испарительных поверхностях прямоточного котла целесообразно стремиться к повышению давления. В то же время прогрев пароперегревателя, паропроводов и турбин желательно вести паром невысоких начальных параметров. Удовлетворение этих двух условий возможно, если в тракте котла имеются встроенные задвижки. Тогда перед задвижкой давление поддерживается близким к рабочему, а за ней снижается до требуемого уровня (в зависимости .от условий прогрева последующих поверхностей и турбины). Чтобы обеспечить режим работы на скользящих параметрах, наряду с встроенными задвижками предусматривают растопочные сепараторы, которые могут располагаться за паровым котлом или у задвижки. В соответствии с этим схемы получили названия: с выносными и встроенными сепараторами. Наиболее часто используют схему с встроенными сепараторами 4 (рис. 148), которые через трубопроводы с дроссельными клапанами 5 присоединяют к тракту 2 котла перед встроенной задвижкой 6. Сепараторы устанавливают на каждый поток рабочего тела.
Отработавшее ядерное топливо (ОЯТ) - это облученное топливо. Оно получается при плановом (обычно от двух до семи лет) облучении ядерного топлива в активной зоне реактора. По сравнению со свежим топливом в его составе меньше содержание урана-235 (поскольку он выгорает), зато накапливаются изотопы плутония, другие трансурановые элементы, а также осколки, или продукты деления - ядра средних масс. С течением времени изменяются также и физические характеристики конструкционных материалов тепловыделяющих сборок.
Источником энергии реактора служит процесс деления тяжелых ядер