Сборник задач по физике Оптика, кинематика, Электромагнитные колебания.

Исследования Френеля по интерференции и дифракции света

Французский инженер, ставший впоследствии знаменитым физиком, Огюстен Френепь (1788 – 1827) начал заниматься изучением явлений интерференции и дифракции с 1814 г. Он не знал о работах Юнга, но подобно ему увидел в этих явлениях доказательство волновой теории света.

В 1817 г. Академия наук Франции объявила конкурс на лучшую работу по дифракции света. Френель решил участвовать в этом конкурсе. Он написал работу, в которой изложил результаты своих исследований, и направил ее в Академию наук в 1818 г. В этой работе Френель изложил ряд случаев интерференции света, которые он исследовал. В частности, он описал опыт по интерференции света при прохождении через две соединенные вместе призмы, так называемая бипризма Френеля.

Опыт Френеля ясно показывает случай интерференции от двух источников света. С помощью этого опыта Френель подсчитал длину волны для красного света. При этом она получилась равной длине волны для красного света, определенной из других опытов.

Основное же внимание в своей работе Френель уделил опытам по дифракции света, для которой разработал специальную теорию. Эта теория основывалась на усовершенствованном принципе Гюйгенса, который в последующем стал называться принципом Гюйгенса – Френеля.

По Гюйгенсу, как мы видели выше, волновую поверхность в данный момент времени t можно рассматривать как огибающую всех сферических волн, источниками которых являются все точки волновой поверхности в более ранний, предыдущий момент времени t0. Найдите потенциальную электростатическую энергию системы четырех положительных зарядов, равных 1 нКл, расположенных в вакууме на расстоянии a = 1 м друг от друга. Принять 1/4peo = 9×109 Н×м2/Кл2. Ответ представьте в наноджоулях.

По Френелю, значение амплитуды световой волны в какой-либо точке пространства в момент времени t можно рассматривать как результат интерференции всех сферических волн, источниками которых являются все точки волновой поверхности в более ранний, предыдущий момент времени t0 .

Френель, используя этот принцип, исследовал разные случаи дифракции и рассчитал расположение полос для этих случаев.

Так, он рассмотрел прохождение света через маленькое отверстие и определил, какая картина должна быть видна на экране, поставленном за этим отверстием. По его расчетам, получалось, что на экране будут видны темные и светлые кольца, если свет монохроматический. При этом Френель вычислил радиусы этих колец в зависимости от размеров отверстия, от расстояния источника света до отверстия и расстояния отверстия до экрана, на котором наблюдается дифракционная картина.

Френель описал и другие случаи дифракции света от различных экранов и рассчитал расположение дифракционных полос, исходя из волновой теории. При этом все расчеты Френеля совпадали с результатами, наблюдаемыми на опыте.

Работы, представленные на конкурс, рассматривала специальная комиссия Академии наук. В ее составе были крупнейшие ученые того времени: Араго, Пуассон, Био, Гей-Люссак. Все они держались ньютоновских взглядов на природу света. Естественно, что они недоверчиво отнеслись к работе Френеля. Однако совпадение расчетов Френеля с опытными данными было настолько хорошим, что комиссия не могла отвергнуть работу Френеля и была вынуждена присудить ему премию.

При этом произошел интересный случай. Рассматривая расчеты Френеля, член комиссии Пуассон заметил, что они приводят к парадоксальному результату: согласно Френелю получалось, что в центре тени от круглого экрана должно быть светлое пятно. Однако этого до сих пор никто не наблюдал. Из теории Френеля следовало, что это светлое пятно будет заметно только в том случае, если радиус круглого экрана будет малым. Проделанный опыт подтвердил предсказание теории Френеля, что произвело большое впечатление на членов комиссии.

Итак, комиссия Академии наук присудила премию Френел~о за его работу по оптике. Однако это вовсе не значит, что волновая теория была признана правильной. Премия ученому была дана за метод расчета. Что же касалось самих представлений, на основе которых был сделан расчет, т.е. представлений о волновой природе света, то академики, рассматривающие работу Френеля, не согласились с ним.

Они рассуждали примерно так: физические основы теории могут быть неверны, а результаты расчета правильны. Такие случаи история знала. Например, пользуясь теорией Птолемея о строении Вселенной, можно вести расчеты и получать правильные результаты положений небесных светил на небе, однако по существу она неверна.

Нужно сказать в защиту академиков, что, несмотря на блестящие результагы, полученные Френелем, в его теории был определенный изъян. Дело в том, что, кроме интерференции и дифракции, физики уже исследовали поляризацию света. Но теория Френеля вопросов поляризации света не касалась. Более того, казалось, что она не в состоянии их объяснить.

Борьба за признание волновой теории света Френель не случайно в первых своих работах обошел вопрос о поляризации света. Ведь, рассматривая световые волны как волны в эфире, Френель считал их продольными. Эфир – это очень тонкая материя, он подобен очень разреженному воздуху. А в воздухе, как уже все знали, могут распространяться только продольные волны, например звуковые, т.е. сгущения и разрежения воздушной среды. В звуковых волнах ничего подобного явлению поляризации не наблюдается.

Метод Рёмера Скорость света определяется аналогично скорости распространения волнь любой природы. Методы измерения скорости разделяются на астрономические и лабораторные. Один из астрономических методов, метод Ремера, осно ван на наблюдении промежутков времени Т между двумя последовательными за тмениями спутника Юпитера Ио . Запаздывание Т затмения в момент наибольшего удаления Земли от Юпитера по сравнению с моментом наибольшего сближения двух планет (точки Ю и 3) связано с тем, что свет, распространяясь с конечной скоростью с, проходит за время ЛГ расстояние, равное диаметру орбиты Земли Современные данные для ЛТ=16,5 мин приводят к значению с, близкому к с=300000 км/с.

Колебательный контур В колебательном контуре, представленном на рис. 45.1, емкость конденсатора равна C, а индуктивность катушки – L. Конденсатор предварительно заряжен до напряжения Uo. Написать зависимость заряда на конденсаторе и силы тока в катушке от времени после замыкания ключа.

Квантовые свойства света

Интерференция световых волн Разность хода лучей от двух когерентных источников света до некоторой точки на экране равна 1,36 мкм. Каков будет результат интерференции света в этой точке экрана, если длина волны света l = 6709 ? Решить этот же вопрос для длины волны = 5360 .

Считая, что на внешнее излучение уходит 5% мощности СВЧ-печи, определить безопасное расстояние, если предельная допустимая плотность потока энергии равна 200 мкВт\см2 при работе печи не более 1 часа. СВЧ- печь считать за точечный источник мощностью 1 кВт.

57. Вычислить плотность потока энергии на расстоянии 3м от СВЧ-печи мощностью 1 кВт, если на внешнее излучение уходит 5% мощности. Принять СВЧ-печь за точечный источник мощностью 1 кВт.

58. Вычислить плотность потока энергии на расстоянии 2 м от СВЧ-печи мощностью 1 кВт, если на внешнее излучение уходит 5% мощности. Принять СВЧ-печь за точечный источник мощностью 1 кВт.

59. Вычислить плотность потока энергии на расстоянии 3 м от СВЧ-печи мощностью 1 кВт, если на внешнее излучение уходит 10% мощности. Принять СВЧ-печь за точечный источник мощностью 1 кВт.

60. Вычислить плотность потока энергии на расстоянии 2 м от СВЧ-печи мощностью 1 кВт, если на внешнее излучение уходит 10 % мощности. Принять СВЧ-печь за точечный источник мощностью 1 кВт.

61. Какова минимальная толщина покрытия на изделиях чешской бижутерии, если при нормальном падении условие максимума при отражении должно выполняться для зеленого цвета (λ = 0,53 мкм).показатель преломления покрытия n =1.4

62. Какова минимальная толщина покрытия на объективе фотоаппарата (голубая оптика), если при нормальном падении условие минимума при отражении должно выполняться для красного цвета (λ = 0,7 мкм).показатель преломления покрытия n =1.4

63 – 65. При выбраковке ткани используется дифракция на регулярной структуре нитей. При нарушении структуры меняется дифракционная картина. Рассчитать углы порядков дифракции, если расстояние между нитями по горизонтали а, расстояние по вертикали b, освещение ведется светом с длиной волны λ . Данные для задач в таблице.

m

λ (мкм )

а(мм )

b(мм )

63

1-3

0,53

0,1

0,05

64

1-3

0,63

0.05

0.1

65

1-3

0,694

0,05

0,025

66. На грань кристалла каменной соли падает пучок параллельных рентгеновских лучей с длиной волны 0.15 нм. Под каким углом к атомной плоскости наблюдается дифракционный максимум третьего порядка, если расстояние между атомными плоскостями кристалла 0.285 нм?

67. На кристалл кальцита, расстояние между атомными плоскостями которого 0.3 нм, падает пучок параллельных рентгеновских лучей, длина волны которых 0.147 нм. Определить, под каким углом к поверхности кристалла / угол скольжения / должны падать рентгеновские лучи, чтобы наблюдался дифракционный максимум первого порядка.

Физический закон - отражение связи или зависимости между некоторыми физическими величинами. Методы физических исследований: Экспериментальный метод: обнаружение ранее неизвестных явлений, подтверждение или опровержение физических теорий. Теоретический метод: формулирование общих законов природы и объяснение на основе этих законов различных явлений, предсказание явлений. Физика и современное естествознание. Системы единиц физических величин.


Измерение силы тока и напряжения в цепях постоянного тока