Сборник задач по физике Оптика, кинематика, Электромагнитные колебания.

Методика решения задач по кинематике

Каждая физическая задача имеет свои особенности. Поэтому при решении любых физических задач, в том числе и кинематических, полезно придерживаться следующего порядка выполнения основных действий.

Внимательно прочитав задачу, необходимо выяснить заданные условия и какие параметры необходимо определить. Кратко записать основные значения заданных величин, все внесистемные единицы перевести в систему СИ. Выяснить по условию задачи характер движения. Сделать схематический чертеж, отображающий описанное в задаче движение. Изобразить на нем траекторию движения, векторы скорости, ускорения, перемещения. Выбрать систему координат, связанную с телом отсчета, показать положительное направление координатных осей. Координатные оси выбирают так, чтобы проекции векторов на них выражались, возможно, более простым образом. Составить для данного движения уравнения, отражающие в векторной форме математическую связь между изображенными на схеме физическими величинами. Спроектировать записанные уравнения на выбранные оси. При этом необходимо учитывать, что проекция вектора на ось считается положительной, если направление соответствующей составляющей совпадает с положительным направлением оси, в противном случае она считается отрицательной. Решить составленную систему уравнений относительно искомых величин, т.е. получить расчетную формулу. Проверить размерность расчетной формулы, затем произвести вычисления.

Методические указания предназначены для абитуриентов. Предполагается, что абитуриент знает школьный теоретический материал данного раздела физики. В пособии рассмотрены примеры решения задач, которые абитуриент должен внимательно разобрать. Приведены задачи для самостоятельного решения, в основном, из экзаменационных вступительных билетов прошлых лет ТПУ.

ОСНОВНЫЕ ЗАКОНЫ И ФОРМУЛЫ

Скорость  [м/с] – величина векторная.

,

где  – модуль вектора скорости;  – проекция вектора  на ось х;  – проекция вектора   на ось y;  – угол между вектором   и осью х.

Средняя скорость прохождения пути – скалярная величина:

  , (1)

где S – путь, пройденный телом за промежуток времени t. Средняя скорость или средняя скорость перемещения – векторная величина:

  , (2)

где  – перемещение, которое было совершено за интервал времени .

Ускорение а [м/с2]:

 , (3)

где  – изменение скорости за время .

Прямолинейное равномерное движение:

 , (4)

где S – путь, пройденный телом за время t, х – текущая координата; х0 – начальная координата;

Прямолинейное равноускоренное и равнозамедленное движение:

  (5)

где S – путь, пройденный телом за время t;  – начальная скорость тела;  – скорость тела в момент времени t; х0 – начальная координата; х – текущая координата. Знак "+" относится к равноускоренному движению, а знак "–" к равнозамедленному.

Для равноускоренного движения справедливо:

 . (6)

Свободное падение тела ():

  (7)

где h – путь при свободном падении; g – ускорение свободного падения;  – скорость тела в момент времени t.

Движение тела, брошенного вверх:

 , (8)

где hmax – максимальная высота подъема тела; t1 – время подъема тела (время подъема тела равно времени падения); – начальная скорость тела.

Равномерное движение тела по окружности:

  (9)

где N – число оборотов, совершенное за время t; Т – период вращения (с); n – частота вращения (1/с);  – линейная скорость вращения (м/с); R – радиус вращения (м);  – угловая скорость (рад/с);  – угол поворота радиус-вектора (рад);  – время поворота радиус-вектора (с);

ан – центростремительное ускорение (м/с2).

Закон сложения скоростей: скорость движения тела относительно неподвижной системы отсчета  равна векторной сумме скорости  тела относительно подвижной системы отсчета и скорости  самой подвижной системы относительно неподвижной:

   (10)

Кинематика специальной теории относительности Постулаты Эйнштейна. Никакие эксперименты, проводимые в данной лабораторной инерциальной системе не позволяют различить находится эта система в состоянии покоя или равномерного и прямолинейного движения. Физические процессы во всех инерциальных системах протекают одинаково и не зависят от выбора системы отсчета, т.е. инвариантны по отношению к преобразованиям из одной инерциальной системы в другую.

Пример. Автомобиль проходит первую треть пути со скоростью , а оставшуюся часть пути – со скоростью = 50 км/ч. Определить скорость на первом участке пути, если средняя скорость на всем пути  = 37,5 км/ч. Анализ и решение: Обозначим весь путь через S, время, затраченное на прохождение первого участка пути – через t1 время движения на втором участке пути – через t2.

Тело, падающее без начальной скорости с некоторой высоты h1, прошло последние h2 = 30 м за время t2 = 0,5 с. Найти высоту падения hl и время падения t1. Сопротивлением воздуха пренебречь.

По графику зависимости координаты х от времени t, изображенной на рисунке построить графики зависимости  и

С балкона вертикально вверх брошен мячик с начальной скоростью υ0 = 8 м/с. Через 2 с мячик упал на зем­лю. Определить высоту балкона над землей. Принять g = 10 м/с2. Результат представить в единицах СИ.

Ракета движется относительно неподвижного наблюдателя со скоростью υ = 0,99с (с – скорость света в вакууме). Какое время пройдет по часам неподвижного наблюдателя, если по часам, движущимся вместе с ракетой, прошел один год? Как изменятся линейные размеры тел в ракете (по линии движения) для неподвижного наблюдателя? Как изменится для этого наблюдателя плотность вещества в ракете?

Задачи для самостоятельного решения Из двух пунктов, расположенных на расстоянии х0 = 90 м друг от друга одновременно начали движение два тела в одном направлении. Тело, движущееся из первого пункта имеет скорость υ1 = 10 м/с, а тело движущееся из второго пункта имеет скорость υ2 = 4 м/с. Через сколько времени первое тело догонит второе. Результат представить в единицах СИ. 

С какой наименьшей скоростью следует бросить тело под углом 56° к горизонту, чтобы оно перелетело через вертикальную стену высотой 5,6 м, если стена находится от точки бросания на расстоянии 5 м? Принять g = 10 м/с2. Результат представить в единицах СИ и округлить до десятых. 

Пропеллер самолета диаметром 3 м вращается при посадке с частотой 2000 мин–1. Посадочная скорость самолета относительно Земли равна 162 км/ч. Определить скорость точки на конце пропеллера при посадке. Результат представить в единицах СИ и округлить до целого числа.

Уравнение гармонических колебаний. Представление гармонических колебаний на векторной диаграмме. Сложение гармонических колебаний одного направления равных и близких частот. Сложение взаимно перпендикулярных гармонических колебаний равных и кратных частот.
Электрический ток в различных средах