Курсовая на вычисление интеграла

Формула Тейлора для ФНП

Дифференцируемость ФНП

Теорема о существовании всех частных производных ФНП

Для функции  вычислить  и  и сравнить эти значения, если ; ; .

Теорема о достаточных условиях дифференцируемости ФНП в точке

Дифференциалы высших порядков ФНП Пусть в области , , задана произвольная ФНП , , имеющая непрерывные частные производные первого порядка.

Для  вычислить  и , где  и , ,  – произвольные постоянные числа.

Производная сложной ФНП

Формула Тейлора позволяет вычислять приближенно значение функции с любой наперед заданной точностью. Погрешность может быть установлена с помощью оценки остаточного члена.

Дифференцирование сложной ФНП Сложная ФНП, как и сложная функция одного переменного, есть суперпозиция двух или нескольких функций. Например, сложная функция , определенная на множестве , понимается как суперпозиция "внешней" функции  и "внутренних" функций , , определенных на множестве . При этом множество значений

Диффенцирование неявно заданной функции

Найти частные производные функции , заданной неявно уравнением  в окрестности точки .

Различают несколько постановок задачи на нахождение экстремума ФНП

Исследовать на локальный экстремум .

Абсолютный экстремум ФНП Допустимая точка  называется точкой абсолютного минимума (или максимума) ФНП ,  в задаче (*), если
выполняется условие:    или  .

Интегрирование функций нескольких переменных

Понятие интеграла ФНП Для построения интеграла ФНП  по фигуре , , используется следующая процедура построения интегральной суммы и переход к пределу.

В зависимости от числа независимых переменных функции, размерности и меры фигуры интеграл  имеет различное представление, интерпретацию и способ счета.

Теорема необходимое условие существования определенного интеграла

Пусть , ,  – множество точек из , т.е. .

Построить схематично график функции  на множестве :

Для функции  представить на плоскости  множество точек  ее существования; указать свойства этого множества.

Понятие предела функции многих переменных (сокр. ФНП) вводится в предельной точке области определения функции.

Иногда удобно использовать переход от переменных  и  к полярным координатам. В частности, условие  (одновременно и независимо друг от друга) преобразуется в условие  при всяком  (независимо от ; сразу для всех ).

Многие теоремы о пределах, рассмотренные подробно для функции одной переменной (сокр. ФОП), могут быть перефразированы и доказаны для ФНП. Это прежде всего теорема об единственности предела (конечного), теорема о локальной ограниченности функции, имеющей конечный предел при , теорема "об арифметике" функций, имеющих конечные пределы при  и т.д. Приемы вычисления предела ФОП также могут быть использованы для ФНП.

Показать, что функция   непрерывна в точке   по каждой координате  и , но не является непрерывной в точке  по совокупности переменных.

Пусть , , . Частные производные первого порядка функции  вводятся соответственно соотношениям

Записать уравнение касательной плоскости к поверхности  в точке .

Некоторые свойства интеграла ФНП

Геометрические свойства интеграла ФНП

Площадь части криволинейной поверхности  считается с помощью поверхностного интеграла

Некоторые механические приложения интеграла ФНП Масса фигуры (отрезка, дуги, плоской фигуры, части криволинейной поверхности, тела)

Вычисление интеграла  рассмотрим подробно в зависимости от  и .

Для подынтегральной функции  определенный интеграл с переменным верхним пределом определяет
первообразную на .

Типовые задачи

Вычислить интеграл .

Вычисление площади плоской фигуры Площадь фигуры в декартовых координатах Вычислить площадь фигуры, ограниченной линиями  и .

Площадь плоской фигуры в полярных координатах

Вычисление объема тела

Вычислить объем цилиндрического тела, расположенного между плоскостями   и  и ограниченного поверхностью  и плоскостью .

Механические приложения Пластина имеет форму прямоугольника со сторонами длиной   и . Найти массу этой пластины, если ее плотность распределения массы в произвольной точке равна квадрату расстояния от точки до одной из вершин пластины.

Вычисление площади криволинейной поверхности ПРИМЕР. Вычислить площадь частей сферы , лежащих внутри цилиндра .

Вычислить интеграл

Вычислить интеграл , где   – шаровое кольцо .

Вычислить объем тела, ограниченного эллипсоидом .

Вычисление криволинейных интегралов I рода Вычислить интеграл , если  , , .

Длина дуги в декартовых координатах Вычислить длину одного витка винтовой линии , , .

Механические приложения Вычислить массу дуги   

Вычислить момент инерции

Вычислить повторный интеграл

Вычислить повторный интеграл .

 

Линейным дифференциальным уравнением (ЛДУ) называется уравнение вида,

Решить ДУ .

Пространство  имеет размерность , его "базис" состоит из  линейно независимых элементов из .

Теорема о необходимом условии линейной зависимости произвольной системы функций

Поскольку понятия линейной зависимости и независимости системы решений ОЛДУ  отрицают друг друга, то теперь можно сформулировать критерий линейной независимости системы решений ,  ОЛДУ.

Найти ФСР ОЛДУ . Записать общее решение. По НУ:   выделить частное решение.

Итак, для нахождения общего решения НЛДУ нужно

 

Решения задачи Коши

Решить 

СДУ имеет нормальную форму записи, если удается записать ее уравнения в виде, разрешенном относительно первых производных неизвестных функций

Геометрическая интерпритация СДУ в нормальной форме и ее решений

Пространство переменных  СДУ в нормальной форме называется фазовым пространством системы. Его структура может быть различной

  Задача КОШИ для СДУ в нормальной форме При рассмотрении прикладной задачи, требующей решения СДУ, как правило, интересует единственное решение. Поэтому нужно уметь выделять из бесконечного множества решений СДУ требуемое решение.

Является ли двухпараметрическое семейство функций ,  общим решением СДУ  

Сведение СДУ к одному ДУ

Свести СДУ  к одному ДУ. Решить ДУ. Записать СДУ и решение СДУ в векторной и векторно-матричной формах.

Метод интегрируемых комбинаций  

СДУ второго порядка сводится к ДУ , откуда   и из первого уравнения , т.е.  – общее решение СДУ.

СДУ в нормальной форме  может быть представлена в виде , симметричном относительно переменных. Так, например, симметричная форма записи СДУ

Метод Эйлера

Свойства решений СОЛДУ

Рассмотрим вектор-функции  и . При каждом   и  линейно зависимы, но ни одна из этих вектор-функций не получается из другой умножением на число, т.е. на  эти функции линейно независимые.

Теорема о структуре общего решения СОЛДУ

Некоторые свойства матриц ФСР СОЛДУ

Общее решение СОЛДУ  запишется , где  – произвольный вектор, . При этом задача Коши  имеет единственное решение , поскольку из соотношения  имеем .

Пример Решить СДУ 

 

Решить СОЛДУ .

Решить СОЛДУ  .

 

Математика производная, интеграл , дифференциальное исчисления