Вычислить площадь фигуры Найти площадь сегмента Вычислить площадь фигуры, ограниченной эллипсом Площадь в полярных координатах Определить объем эллипсоида . Вычислить длину дуги Вычисление длин дуг кривых, заданных параметрически Примеры

Вычисление площадей в декартовых координатах

Пример 1.4. Вычислить площадь фигуры, лежащей в первой четверти внутри круга и ограниченной параболами  и   

Подпись:  .

Решение. Найдем абсциссу точки А пересечения параболы

  с окружностью .

Исключив у из системы уравнений

получим ,  откуда находим единственный положительный корень . Аналогично находим абсциссу точки D пересечения окружности  и параболы ; .

Таким образом, интересующая нас площадь равна

,

где , .

По свойству аддитивности интеграла

=

=

=.

Здесь мы воспользовались известной формулой тригонометрии

.

Как и все новое, начертательная геометрия не сразу завоевала свое признание. В первое время она даже имела противников в лице некоторых ученых специалистов, которые уж очень привыкли к старому и боялись всего нового. Но простой и эффектный метод начертательной геометрии, имея очевидное превосходство над всеми другими вычислительными способами, довольно скоро покорил сердца недовольных и из противников сделал их своими сторонниками

Выпуклость функции