Вычисление длин дуг Вычисление площади Каноническое уравнение Общее уравнение линий Скалярное произведение векторов Типовой расчет Задача Уравнение равносторонней  гиперболы Ортогональная система координат в пространстве Аналитическая геометрия

Аналитическая геометрия

Ортогональная система координат в пространстве.Длина вектора.

 

Определение: Ортогональная ( декартова ) система координат это

1.     единица масштаба ( отрезок, длина которого будет считаться "единичной" ),

2.     фиксированная т.О ( начало координат )

3.      ортонормированный базис е1, е2, е3 (изменим стандартное обозначения для удобства)

4.       пересекающиеся в т.О прямые l1, l2, l3, т.ч. li содержит реализацию еi, i=1,2,3.

Если на li зафиксировать "положительное" направление в соответствии с направлением еi, получим оси координат (стандартное обозначение осей: Ox, Oy и Oz).

 

Теорема: Если известны координаты точек А=(x1,y1,z1) и B=(x2,y2,z2) , то координаты вектора АВ можно вычислить по формуле: АВ={ x1-x2 , y1-y2 , z1-z2 }.

Теорема: Если в ортогональной системе координат b={x, y, z}, то | b |=.

 

 

 

Ориентация пространства. Правые и левые тройки некомпланарных векторов.

 

Для дальнейшего изучения свойств пространства необходимо ввести определение ориентации пространства. Строгая теория, касающаяся этого понятия не очень сложна, но достаточно суха. В связи с этим ограничимся лишь некоторыми “качественными” пояснениями.

Итак, все упорядоченные некомпланарные тройки векторов могут быть разбиты на два непересекающихся класса: правые тройки и левые тройки.

Определение : Упорядоченная тройка некомпланарных векторов а1, а2, а3 называется правой, если наблюдателю, находящемуся внутри телесного угла, образованного этими векторами, кратчайшие повороты от а1 к а2 и от а2 к а3 кажутся происходящими против часовой стрелки. Если повороты происходят по часовой стрелке, то тройка – левая.

 

Есть и ещё один способ разделить эти два класса:

Правило правой руки: Совместите начала всех векторов тройки в одной точке. Представьте, что в этой точке находится ладонь Вашей правой руки. Совместите большой палец с первым вектором базиса, а указательный – со вторым. Если теперь вы сможете совместить средний палец с третьим вектором, то рассматриваемая тройка векторов – правая. Если нет – левая.

Выбрав один из двух классов и назвав все входящие в него базисы “положительными” мы зададим ориентацию пространства.

 

Далее будем считать положительными правые тройки векторов. Все дальнейшие определения будем давать с учетом этого

Выпуклость функции