Вычисление длин дуг Вычисление площади Каноническое уравнение Общее уравнение линий Скалярное произведение векторов Типовой расчет Задача Уравнение равносторонней  гиперболы Ортогональная система координат в пространстве Аналитическая геометрия

Аналитическая геометрия

Общее уравнение линий второго порядка

Уравнения кривых второго порядка с осями симметрии, параллельными координатным осям

Найдем сначала уравнение эллипса с центром в точке , оси симметрии которого параллельны координатным осям Ох и Оу и полуоси соответственно равны а и b. Поместим в центре эллипса   начало новой системы координат , оси которой  и  параллельны соответ­ствующим осям Ох и Оу и одинаково с ними направленны (см. рис.41).

В этой системе координат уравнение Рис.41.

эл­липса имеет вид

Так как , то в старой системе координат 

уравнение эллипса запишется в виде

Аналогично рассуждая, получим уравне­ние гиперболы с центром в точке   и полуосями а и Ь (см. рис. 42):

И, наконец, параболы, изображенные на рисунке 43, имеют соответству­ющие уравнения.

 

 

 

 

 

   

 

 

 

  

 

Уравнение Ac2 + Су2 + 2Dx + 2Еу + F = О

Уравнения эллипса, гиперболы, параболы и уравнение окружности   после преобразований (раскрыть скобки, пе­ренести все члены уравнения в одну сторону, привести подобные члены, ввести новые обозначения для коэффициентов) можно записать с помо­щью единого уравнения вида

  (11.14)

где коэффициенты А и С не равны нулю одновременно.

Возникает вопрос: всякое ли уравнение вида (11.14) определяет одну из кривых (окружность, эллипс, гипербола, парабола) второго порядка?

Ответ дает следующая теорема.

  Теорема 11.2. Уравнение (11.14) всегда определяет: либо окружность (при А=С), либо эллипс (при А • С > 0), либо гиперболу (при А • С < 0), либо параболу (при АС = 0). При этом возможны случаи вырождения: для эллипса (окружности) - в точку или мнимый эллипс (окружность), для гиперболы - в пару пересекающихся прямых, для параболы - в пару параллельных прямых.

 

 

Пример 11.1. Установить вид кривой второго порядка, заданной урав­нением  

Решение: Предложенное уравнение определяет эллипс . Действительно, проделаем следующие преобразования:

  Получилось каноническое уравнение эллипса с центром в  и полуосями  и  .

 

 

  Пример 11.2. Установить вид кривой второго порядка, заданной уравнением х2 + 10х - 2у + 11 = 0.

 Решение: Указанное уравнение определяет параболу (С = 0). Действи­тельно,

.

Получилось каноническое уравнение параболы с вершиной в точке   и

 

  Пример 11.3. Установить вид кривой второго порядка, заданной уравнением.

  Решение: Преобразуем уравнение: 

  Это уравнение определяет две пересекающиеся прямые

Общее уравнение второго порядка

 Рассмотрим теперь общее уравнение второй степени с двумя неизвест­ными:

 Ax2 + 2Вху + Су2 + 2Dx + 2Еу + F == 0. (11.15)

Оно отличается от уравнения (11.14) наличием члена с произведением координат. Можно, путем поворота координатных осей на угол , преобразовать это уравнение, чтобы в нем член с произведением координат отсутствовал.

 Используя формулы поворота осей

выразим старые координаты через новые:

Выберем угол  так, коэффициент при  обратился в нуль, т.е. чтобы выполнялось равенство

т.е.

   (11.16)

т.е.

Отсюда

   (11.17)

 

  Таким образом, при повороте осей на угол  , удовлетворяющий условию (11.17), уравнению (11.15) сводится к уравнению (11.14).

 Вывод: общее уравнение второго порядка (11.15)определяет на плоскости (если не считать случаев вырождения и распадения) следующие кривые: окружность, эллипс, гиперболу, параболу.

Аналитическая геометрия

 

Вычисление давления, работы и других физических величин

I. Сила давления жидкости Р на площадку S с глубиной погружения h по закону Паскаля равна P=ghS, где g- удельный вес жидкости.

II. Если непрерывная переменная сила X=f(x) действует в направлении оси Ох, то работа силы на отрезке  выражается интегралом 

III. Кинетическая энергия К материальной точки массы m, обладающей скоростью n, выражается формулой

IV. Электрические заряды отталкивают друг друга с силой  где  и - величины  зарядов, r- расстояние между ними.

Замечание. При решении прикладных задач мы будем считать все данные выраженными в одной системе измерений и будем опускать наименования соответствующих величин.

Подпись:  Пример 1. Вычислить силу давления воды на вертикальную треугольную пластинку, имеющую основание b и высоту h, погруженную в воду так, что её вершина лежит на поверхности воды.

Решение. Введём систему координат так, как показано на Рис. 9.1, и рассмотрим горизонтальную полоску, находящуюся на произвольной глубине х и имеющую толщину, равную dx.

Приближённо принимая эту полоску за прямоугольник, находим дифференциал площади dS=MN dx. Из подобия треугольников BMN и ABC имеем MN/b=x/h.

Отсюда MN=bx/h и dS=(bx/h)dx.

Сила давления воды на эту полоску с точностью до бесконечно малых высшего порядка равна dP=x dS (учитывая, что удельный вес воды равен 1). Следовательно, сила давления воды на всю пластинку ABC равна

 

 

Подпись:  Пример 2. Вертикальная плотина имеет форму трапеции, верхнее основание которой равно 70 м, нижнее 50 м, а высота 20 м. Найти силу давления воды на плотину (рис. 9.2).

Решение. Дифференциал площади (dS) заштрихованной на рисунке области приближённо равен dS=MN dx. Учитывая подобие треугольников OML и OAE, находим ML/20=(20-x)/20; отсюда ML=20-x, MN=20-x+50=70-x. Таким образом, dS=MN dx=(70- -x)dx и дифференциал силы давления воды равен

 

Интегрируя по х в пределах от 0 до 20, получим

 

Выпуклость функции