Интегральное исчисление пределы Производные Экстремум функции Система координат Поверхности Матрицы булевы функции дифференциалы интеграл произведение векторов теорема Коши Физические задачи математика Функции Формула Тейлора

Криволинейные интегралы

Криволинейные интегралы 2-го рода

Связь с интегралом 1-го рода.

Для интеграла второго рода будем использовать эквивалентное определение, где в интегральных суммах вместо длины дуги lk используется длина хорды D lk .

Поэтому

=

Слева стоят интегральные суммы для интеграла 2-го рода, а справа стоят суммы, которые при измельчении разбиения будут сходиться к интегралу

, где a=a(x,y,z)  - угол, который образует касательный вектор к кривой G в точке (x,y,z) с осью x, . Отсюда следует, что

=.

Докажем, что интегральные суммы сходятся к интегралу . Действительно,

==+.

Первая сумма является интегральной для , вторая может быть сделана сколь угодно малой выбором достаточно мелкого разбиения (в силу равномерной непрерывности функции f ).

Аналогичные утверждения справедливы для интегралов по отношению к осям dy, dz. Откуда, в свою очередь, будет следовать равенство

=, (4)

,,.

Обозначим орт вектора касательной  и введем понятие вектора элемента длины дуги . В этих обозначениях интеграл справа в (4) может быть записан в виде , это интеграл первого рода. Интеграл слева в (4) является интегралом второго рода и его принято обозначать . Таким образом формула (4) в векторном виде может быть записана следующим образом

=.

Определение. Кривая с заданным направлением обхода называется ориентированной кривой. Для плоской замкнутой кривой положительным направлением обхода называется такое направление, при котором область, ограниченная этой кривой, остается слева.

 

Как ученый, он чрезвычайно разносторонен — математик и астроном, геофизик и географ. Как астроном, он прославился выдвинутой им гипотезой о происхождении Земли и других планет. Как географ, он проделал огромную работу по освоению советской Арктики.

Выпуклость функции