Интегральное исчисление пределы Производные Экстремум функции Система координат Поверхности Матрицы булевы функции дифференциалы интеграл произведение векторов теорема Коши Физические задачи математика Функции Формула Тейлора

Кратные интегралы. Двойной интеграл

Замена переменных в двойном интеграле.

Рассмотрим отображение

и его обратное ,

непрерывно дифференцируемое и имеющее отличный от нуля якобиан в области D. Пусть функция f интегрируема в D, тогда

  = .

Доказательство. Оба интеграла, слева и справа, существуют. Выберем некоторое разбиение области D на подобласти Di и соответствующее ему разбиение области D на множества Di . Тогда

mDi = ==.

Для этих точек (xj,hj ) , (xj,yj ) можно выписать интегральные суммы

.

При переходе к пределу при измельчении разбиения левая и правая части этого равенства будут сходиться к интегралам

  , ,

соответственно.

 

Изумительно быстро продвинулся в области науки талантливый советский математик Лев Генрихович Шнирельман, родившийся в Белоруссии (Гомель). Еще в школьные годы он обнаружил яркий талант математика. В 12 лет он довольно глубоко изучил теорию алгебраических уравнений и с помощью ее решал весьма трудные задачи алгебры

Выпуклость функции