Интегральное исчисление пределы Производные Экстремум функции Система координат Поверхности Матрицы булевы функции дифференциалы интеграл произведение векторов теорема Коши Физические задачи математика Функции Формула Тейлора

Площадь плоской области Свойства площади.

Теорема (Монотонность). Если D1, D2 квадрируемы и D1Ì D2 , то mD1 £ mD2 .

Доказательство. Любой Pi для D1 является вписанным и для D2, поэтому mD1=sup mPi ,будет £ mD2.

Теорема (Аддитивность). Если квадрируемая область D разбита кусочно-гладкой кривой на две подобласти D1 ,D2 , то они квадрируемы и

mD = mD1 + mD2.

Доказательство (только для ломаной, разбивающей область на две части). Обозначения см. на рис. 2_10_3.swf. Выполнены следующие соотношения

Pi¢¢È Pi¢= Pi , Pe¢¢È Pe¢= Pe (1)

По заданному e выберем Pi , Pe так, что m Pe - m Pi < e . Из (1) следует, что

mPi¢¢ + mPi¢= mPi , mPe¢¢+ mPe¢= mPe . Вычитая из второго равенства первое получим , (mPe¢¢ - mPi¢¢) + (mPe¢ - mPi¢)= mPe - mPi < e . Откуда получаем неравенства (mPe¢¢ - mPi¢¢) < e , (mPe¢ - mPi¢) < e . Таким образом, квадрируемость D1 ,D2 доказана. Для доказательства равенства mD = mD1 + mD2 можно рассмотреть последовательность вписанных в D многоугольников Pk , реализующих верхнюю грань sup mPi = mD и таких, что PkÌ Pk+1 , . Если через Pk¢, Pk¢¢ , обозначить, соответствующие заданному разбиению области, вписанные многоугольники для областей D1 ,D2 , то будет выполнено равенство

mPk¢ + mPk¢¢ = m Pk (2)

  так как Pk¢ Ì Pk+1¢ , Pk¢¢ Ì Pk+1¢¢ ( это следует из условия PkÌ Pk+1 ), то будут существовать пределы  и . Переходя к пределу в (2) получим

mD1 + mD2 ³  +   = mD.

Аналогичное рассуждение можно повторить для описанных многоугольников. В результате получим неравенство

mD1 + mD2 £ mD.

Откуда и следует требуемое равенство.

В качестве еще одного свойства площади отметим ее независимость от выбора системы координат. Легко доказать

Теорема (Второй критерий квадрируемости). Пусть D некоторая область. Если для

"e>0 $ кадрируемые , то D квадрируема.

В теореме сформулировано только достаточное условие квадрируемости, необходимость этого условия очевидна.

 

Увлекаться математикой Игорь Шафаревич стал не сразу. В школе он занимался с «перебоями». Были случаи, когда по математике получал неудовлетворительные оценки. И не потому, что математика давалась ему трудно. Вовсе нет. Просто до математики у него не доходили руки. Причина была ясна: Игорь Шафаревич увлекался тогда историей

Выпуклость функции