Интегральное исчисление пределы Производные Экстремум функции Система координат Поверхности Матрицы булевы функции дифференциалы интеграл произведение векторов теорема Коши Физические задачи математика Функции Формула Тейлора

Непрерывные функции

Непрерывность обратной функции.

Еще раз определение обратной функции. Пусть f(x) определена на X, Y – множество ее значений. Предположим, что различным значениям x1 и x2 соответствуют различные значения y1 =f(x1), y2=f(x2). Тогда для любого yÎ Y $!xÎX:y=f(x), такое соответствие y® x называется обратной функцией и обозначается x=f -1(y).

Лемма. Обратная функция для строго монотонно возрастающей функции, будет строго монотонно возрастающей функцией. Обратная функция для строго монотонно убывающей функции, будет строго монотонно убывающей функцией.

Доказательство. Например, пусть f(x) монотонно возрастает. Если y1 ,y2 из области значений функции f(x) и y1 < y2 , то f -1(y1) £ f -1(y2). Действительно, если предположить противное: x1= f -1(y1) > x2= f -1(y2) , то из условия монотонного возрастания функции f(x) получим неравенство y1= f(x1) ³ f (x2)=y2 , что противоречит условию y1 < y2 . Аналогично доказывается, что обратная к монотонно убывающей функции является монотонно убывающей функцией.

Теорема ( существование обратной функции у монотонной )

Если y=f(x) строго монотонно возрастает на [a,b] и непрерывна там, то на Y=[f(a),f(b)] существует обратная функция и является непрерывной на этом множестве.

Доказательство. Существование обратной функции следует из строгой монотонности. Кроме того, обратная функция также будет монотонной с областью значений [a,b]. Из критерия непрерывности монотонной функции следует ее непрерывность.

В 1948 году Н. Г. Чеботареву, одному из крупнейших современных алгебраистов, члену-корреспонденту Академии наук СССР, профессору Казанского университета, посмертно присуждена Государственная премия I степени за исследование по теории алгебраических уравнений, изложенное в монографии «Проблемы резольвент», опубликованной в 1947 году.

Выпуклость функции