Интегральное исчисление пределы Производные Экстремум функции Система координат Поверхности Матрицы булевы функции дифференциалы интеграл произведение векторов теорема Коши Физические задачи математика Функции Формула Тейлора

Стереометрия Параллелепипед



Определение. Призма, основание которой - параллелограмм, называется параллелепипедом.

В соответствии с определением параллелепипед - это четырехугольная призма, все грани которой - параллелограммы . Параллелепипеды, как и призмы, могут быть прямыми и наклонными. На рисунке изображен наклонный параллелепипед, а на рисунке - прямой параллелепипед.

Прямой параллелепипед, основанием которого служит прямоугольник, называют прямоугольным параллелепипедом. У прямоугольного параллелепипеда все грани - прямоугольники. Моделями прямоугольного параллелепипеда служат классная комната, кирпич, спичечная коробка.

Длины трех ребер прямоугольного параллелепипеда, имеющих общий конец, называют его измерениями.

Любой отрезок с концами, принадлежащими поверхности параллелепипеда и проходящий через середину его диагонали, делится ею пополам; в частности, все диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам.

тереометрия Параллелепипед Учебные материалы Математика


[an error occurred while processing this directive]

Выпуклость функции