Первый и второй замечательные пределы

Таблица неопределенных интегралов
Два основных метода интегрирования
Предварительные сведения из алгебры
Разложение дроби на элементарные
Метод неопределенных коэффициентов
Интегрирование некоторых иррациональностей
Интегрирование дифференциальных биномов
Интеграл Римана Определения
Суммы Дарбу и их свойства
Нижний и верхний интегралы
Теорема Дарбу.
Классы интегрируемых функций
Свойства определенного интеграла
Пропускная способность в сетях связи
Теоремы о среднем
Производная интеграла по верхнему пределу
Формула Ньютона-Лейбница
Интегрирование по частям
Остаточный член формулы Тейлора
Некоторые применения определенного интеграла
Квадрируемые фигуры
Свойства площади
Площадь криволинейной трапеции
Вычисление площадей областей
Объем
Объем тела вращения
Площадь поверхности вращения
Первая теорема Гюльдена.
Несобственный интеграл первого рода
Критерий Коши
Несобственный интеграл второго рода
Признаки сравнения
Формула замены переменного
Функции Эйлера
Метрика. Расстояние.
Неравенство Коши-Буняковского
Теорема Больцано-Вейерштрасса
Геометрическая терминология
начертательная геометрия
История искусства
Сборник задач по физике
Атомная промышленность и наука
Применение MATLAB
при изучении курса электротехники
Имитационное моделирование
моделейПакет Simulink
Расчет электрических цепей
Моделирование цепей
переменного тока

 

 

Пределы при разных условиях. Некоторые частные случаи

Пример Пусть $ x_0=0$ и рассматривается функция $ f(x)=2\sin x+1$. Покажем, что $\displaystyle \lim_{x\rightarrow 0}(2\sin x+1)=1.$

Пример Покажем, что предел последовательности $ y_n=\dfrac{1}{n^2}$ равен 0.

Общее определение предела

Определение Пусть $ \mathcal{B}$-- некоторая база и функция $ f(x)$ определена во всех точках $ x$ некоторого окончания $ E_0$ базы $ \mathcal{B}$ (и, значит, определена во всех точках более далёких окончаний $ E\sbs E_0$). Число $ L$ называется пределом функции $ f(x)$ по базе $ \mathcal{B}$ (или при базе $ \mathcal{B}$) и обозначается $\displaystyle L=\lim_{\mathcal{B}}f(x),$

Пример

Замена переменного и преобразование базы при такой замене

Бесконечно малые и локально ограниченные величины и их свойства

В этом разделе мы изучим свойства бесконечно малых величин, то есть величин, стремящихся к 0. В следующих разделах на этой основе мы будем изучать свойства величин, имеющих произвольное значение предела.

Определение Функция $ {\alpha}(x)$ называется бесконечно малой величиной при базе $ \mathcal{B}$, если её предел при данной базе равен 0, то есть $ {\alpha}\xrightarrow {\mathcal{B}}0$.

Общие свойства пределов

Первый и второй замечательные пределы

 Определение   Первым замечательным пределом называется предел $\displaystyle \lim_{x\to0}\frac{\sin x}{x}.$

 Определение   Вторым замечательным пределом называется предел $\displaystyle e=\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n.$

Бесконечно большие величины и бесконечные пределы

Пример

Использование непрерывности функций при вычислении пределов

   Определение Пусть $ x_0$ -- внутренняя точка области определения функции $ f(x)$, то есть функция $ f(x)$ определена при всех $ x$ из некоторого интервала $ (x_0-{\delta};x_0+{\delta})$ ( $ {\delta}>0$), окружающего точку $ x_0$. Функция $ f(x)$ называется непрерывной в точке $ x_0$, если
$\displaystyle \lim_{x\to x_0}f(x)=f(x_0)$

Сравнение бесконечно малых

Таблица эквивалентных бесконечно малых при

Пример

Упражнения на вычисление пределов

Формула Тейлора представления числовой функции многочленом

Многочлен Тейлора

Коэффициенты Тейлора

Остаток в формуле Тейлора и его оценка

Остаток в формуле Тейлора в форме Лагранжа

Формула Тейлора для некоторых элементарных функций

Формула Тейлора для экспоненты такова: $\displaystyle e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\ldots+\frac{x^n}{n!}+R_n(x).$

Получаем формулу Тейлора для синуса: $\displaystyle \sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\ldots+
(-1)^{k-1}\dfrac{x^{2k-1}}{(2k-1)!}+R_{2k}(x).$

Упражнение

Оценки ошибок в формулах приближённого дифференцирования

Примеры

        Пример   Рассмотрим функцию $ f(x)=xe^{x^2}$. Найдём её разложение по формуле Тейлора в точке $ x_0=0$. Начнём с того, что напишем ранее найденное разложение для экспоненты,
$\displaystyle e^z=1+z+\frac{z^2}{2!}+\frac{z^3}{3!}+\ldots+\frac{z^n}{n!}+R_n(z),$
и положим в нём $ z=x^2$:
$\displaystyle e^{x^2}=1+x^2+\frac{x^4}{2!}+\frac{x^6}{3!}+\ldots+\frac{x^{2n}}{n!}+R_n(x^2).
$
Теперь умножим левую и правую части этой формулы на $ x$:
$\displaystyle xe^{x^2}=x+x^3+\frac{x^5}{2!}+\frac{x^7}{3!}+\ldots+\frac{x^{2n+1}}{n!}
+xR_n(x^2).$
Заметим, что бесконечно малое при $ x\to0$ выражение $ \tilde R(x)=xR_n(x^2)$ имеет тот же или больший порядок малости, как $ x^{2(n+1)+1}=x^{2n+3}$, и поэтому может рассматриваться как остаточный член $ R_{2n+2}(x)$ в формуле Тейлора для $ f(x)$, а предыдущие слагаемые в правой части формулы -- как многочлен Тейлора данной функции. Так что её искомое разложение найдено.     

Разберём теперь пример того, как полученные разложения элементарных функций можно использовать для раскрытия некоторых неопределённостей.

        Пример   Найдём предел
$\displaystyle \lim_{x\to0}\dfrac{e^x-1-x}{\sqrt{1-x}-\cos\sqrt{x}}.$
Для начала найдём разложение по формуле Тейлора в точке 0 для числителя:
$\displaystyle e^x-1-x=-1-x+1+x+\frac{x^2}{2}+r_3(x)=
\frac{x^2}{2}+r_3(x),$
где через $ r_3(x)$ обозначен остаточный член, имеющий тот же порядок малости, что и $ x^3$. Разложение для знаменателя имеет вид:
$\displaystyle \sqrt{1-x}-\cos\sqrt{x}=(1-\frac{x}{2}-\frac{x^2}{8}+s_3(x))-
(1-\frac{x}{2}-\frac{x^2}{24}+t_3(x)),$
где остаточные члены $ s_3(x)$ и $ t_3(x)$ тоже имеют тот же порядок малости, что и $ x^3$, при $ x\to0$. Выполняя приведение подобных членов, получаем, что знаменатель равен
$\displaystyle -(\frac{1}{8}+\frac{1}{24})x^2+s_3(x)-t_3(x).$
Итак,
$\displaystyle \lim_{x\to0}\dfrac{e^x-1-x}{\sqrt{1-x}-\cos\sqrt{x}}=
 \lim_{x\to0}\dfrac{\frac{x^2}{2}+r_3(x)}
 {-(\frac{1}{8}+\frac{1}{24})x^2+s_3(x)-t_3(x)}=$   
$\displaystyle =\lim_{x\to0}\dfrac{\frac{1}{2}+\frac{r_3(x)}{x^2}}
 {-(\frac{1}{...
...rac{s_3(x)-t_3(x)}{x^2}}=
 \dfrac{\frac{1}{2}}{-(\frac{1}{8}+\frac{1}{24})}=-3.$   
Выпуклость функции