Интегральное исчисление пределы Производные Экстремум функции Система координат Поверхности Матрицы булевы функции дифференциалы интеграл произведение векторов теорема Коши Физические задачи математика Функции Формула Тейлора

Метод Ньютона (метод касательных) нахождение корней уравнения


Рассмотрение предыдущего метода позволяет предположить, что итерации станут приближаться к корню ещё быстрее, если мы будем выбирать касательную вместо секущей не только на первом, а на каждом шаге. Ясно, что тогда формула итераций будет иметь вид

$\displaystyle x_{i+1}=x_i-\dfrac{1}{f'(x_i)}f(x_i)$(9.1)
 


(сравните с формулой метода одной касательной). Этот метод называется методом касательных, или методом Ньютона. Действительно, последовательные приближения метода Ньютона сходятся гораздо быстрее, чем в общем методе итераций (скорость сходимости приближений в котором, напомним, та же, что у геометрической прогрессии со знаменателем $ {\gamma}$ при $ 0<{\gamma}<1$).

Поскольку для метода Ньютона

$\displaystyle {\varphi}(x)=x-\dfrac{f(x)}{f'(x)},$

то

$\displaystyle {\varphi}'(x)=1-\dfrac{(f'(x))^2-f(x)f''(x)}{(f'(x))^2}=
\dfrac{f(x)f''(x)}{(f(x))^2}.$

В точке $ x^*$ получаем $ {\varphi}'(x^*)=0$, так как $ f(x^*)=0$. Тем самым, в этом методе график $ y={\varphi}(x)$ пересекает прямую $ y=x$ в точности по горизонтали, что приводит к очень быстрой сходимости итераций к $ x^*$. Именно, имеет место оценка

$\displaystyle \vert x_{i+1}-x^*\vert\leqslant c\vert x_i-x^*\vert^2\leqslant \dfrac{1}{c}(c\vert x_0-x^*\vert)^{2^{i+1}},$(9.2)
 


где $ c$ -- некоторая постоянная (не зависящая от $ i$). Если начальное приближение $ x_0$ взято достаточно близко от корня $ x^*$, то можно взять $ c=\dfrac{1}{\vert x_0-x^*\vert}$.

Заметим, что по сравнению с общей оценкой метода итераций

$\displaystyle \vert x_{i+1}-x^*\vert\leqslant {\gamma}\vert x_i-x^*\vert,$
[an error occurred while processing this directive]

постоянная $ {\gamma}<1$ заменяется в оценке метода Ньютона (9.2) на стремящуюся к 0 величину $ c\vert x_i-x^*\vert$; отсюда и высокая скорость сходимости.

Скорость сходимости итераций, которая задаётся формулой (9.2), называется квадратичной. Квадратичная скорость сходимости означает, примерно говоря, что число верных знаков в приближённом значении $ x_i$ удваивается с каждой итерацией. Действительно, если $ c\approx1$, и $ \vert x_i-x^*\vert\approx10^{-n}$, то $ \vert x_{i+1}-x^*\vert\approx10^{-2n}$. Это и означает, что число верных знаков при переходе к следующему приближению возросло с $ n$ до $ 2n$, то есть удвоилось.

Геометрический смысл метода Ньютона состоит в том, что на каждом шаге мы строим касательную к графику $ y=f(x)$ в точке очередного последовательного приближения $ x_i$, а за следующее приближение $ x_{i+1}$ берём точку пересечения этой касательной с осью $ Ox$. Тем самым наклон прямой подстраивается на каждом шаге наилучшим образом (ведь кривизну графика, связанную с второй производной, мы не учитываем, и поэтому неизвестно, в какую сторону от касательной отклонится график).

Рис.9.13.Последовательные приближения метода Ньютона

Заметим, что по-другому идею метода Ньютона мы можем описать так: на каждом шаге вместо исходного уравнения $ f(x)=0$ мы решаем приближённое, линеаризованное в точке $ x_i$ уравнение

$\displaystyle f(x_i)+f'(x_i)(x-x_i)=0,$

в котором левая часть -- это многочлен Тейлора первого порядка для функции $ f(x)$ в точке $ x_i$, то есть линейная функция

$\displaystyle \ell_{x_i}(x)=f(x_i)+f'(x_i)(x-x_i).$

Решением линеаризованного уравнения $ \ell_{x_i}(x)=0$ служит следующее приближение $ x_{i+1}$, в то время как решением исходного точного уравнения $ f(x)=0$ служит искомый корень $ x^*$.

Идея замены точной (но сложной) задачи последовательностью более простых линеаризованных задач весьма продуктивна в приближённых методах; например, такая идея даёт эффективный способ решения многомерных задач с ограничениями (метод Франка - Вулфа в нелинейном программировании, см., например, [Киселёв В.Ю., Экономико-математические методы и модели. -- Иваново: изд. ИГЭУ, 1998]).

   
В Математическом институте им. В. А. Стеклова Академии наук СССР руководит отделом теории вероятностей и математической статистики. Является редактором журнала «Успехи математических наук» и математического отдела «Докладов АН СССР». Кроме того, он член редакции Большой советской энциклопедии

Выпуклость функции